
  

AFRL-IF-RS-TR-2005-195 
Final Technical Report 
May 2005 
 
 
 
 
 
 
ENCODING COOPERATIVE DNA CODES 
  
Anthony J. Macula, Inc. 
 
  
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 

 



  

 
 STINFO FINAL REPORT 

 
 
 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, 
including foreign nations. 
 
 
 AFRL-IF-RS-TR-2005-195 has been reviewed and is approved for publication 
 
 
 
 
 
 
 
APPROVED:   /s/ 
   THOMAS RENZ 
   Project Engineer 
 
 
 
 
 
 
 
 FOR THE DIRECTOR:   /s/ 
     JAMES A. COLLINS, Acting Chief 
     Advanced Computing Division 
     Information Directorate 
 
 
 
 
 
 
 
 
 



  
REPORT DOCUMENTATION PAGE 

Form Approved 
OMB No. 074-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE
May 2005 

3. REPORT TYPE AND DATES COVERED 
Final                    Jan 03 – Jan 05 

4. TITLE AND SUBTITLE 
 
ENCODING COOPERATIVE DNA CODES 

6. AUTHOR(S) 
 
Anthony J. Macula 
  

5.  FUNDING NUMBERS 
C     - F30602-03-C-0059 
PE   - 61102F 
PR   - EIDN 
TA   -  AC 
WU  -  01 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 
Anthony J. Macula, Inc. 
36 Westview Cr 
Geneseo NY 14454 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
N/A 
 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
AFRL/IFTC 
26 Electronic Parkway 
Rome NY 13441-4514 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 
AFRL-IF-RS-TR-2005-195 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:  Thomas Renz/IFTC/(315) 330-3423                          Thomas.Renz@rl.af.mil 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
The primary goal of this research was the development of an enabling technology for DNA computing.  It is focused on 
the construction of a biomolecular architecture designed to employ new algorithmic paradigms based on the massively 
parallel computational power of DNA hybridization.  The intent is to develop a computing basis to eventually overcome 
the exponential time complexity of many discrete math problems so that they can be solved in linear real time.  Many of 
these computationally hard (NP) problems are critical to logistics, scheduling and security.  In this way, this research 
addresses computational, national security and knowledge acquisition challenges of the Air Force.  DNA codewords are 
structural and information building blocks in biomolecular computing and other biotechnical applications that employ 
DNA hybridization assays.  Thermodynamic distance functions are important components in the construction of DNA 
codes.  We introduce new matrics for DNA code design that captures key aspects of the nearest neighbor 
thermodynamic model for hybridized DNA duplexes.  One version of our metric gives the maximum number of stacked 
pairs of hydrogen bonded nucleotide base pairs that can be present in any secondary structure in a hybridized DNA 
duplex without pseudoknots.  We introduce the concept of (t-gap) block isomorphic subsequences to describe new 
string metrics that are similar to the weighted Levenshtein insertion-deletion metric.  We show how our new distances 
can be calculated by a generalization of the folklore longest common subsequence dynamic programming algorithm.  
We give a Varshamov-Gilbert like lower bound on the size of some of codes using our distance functions as constraints.  
We also discuss software implementation of our DNA code design methods.

15. NUMBER OF PAGES14. SUBJECT TERMS  
DNA Computing, Synthetic DNA, Biomolecular Computing 

16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 

UL 

NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 

33



  
 i 

 
 

Table of Contents 
 
List of Figures                                                                                                             ii 
1.  Summary          1 
2. Introduction          1 
3. Methods, Assumptions, Procedures      3 
 3.1 Block Isomorphic Subsequences      3 
 3.2 Block Insertion-Deletion Codes       5 
4. Results, Discussion         6 
 4.1 Computing  t x , y         6 
 4.2 Sequences of t-Strings        7 
5. Conclusions          11 
 5.1 Applications to DNA Hybridization Distance Modeling   11 
 5.2 Biomolecular Computing Architecture     18 
 5.3  t-Stem DNA Code Generation Software     23 
6. References          25 



  
 ii 

 
 

List of Figures 
 
Figure 1          7 
Figure 2          7 
Figure 3          7 
Figure 4          7 
Figure 5  Thermodynamic weight of virtual stacked pairs    16  
Figure 6  DNA Strand Engineering                   19 
Figure 7  Independent Sets Problem        21 
Figure 8  Biomolecular Edge Filter       21 
Figure 9  Filters for Edges of Graph in Figure 6     22 
Figure 10 Universal DNA Independent Set Computer    22 
Figure 11 Cooperative DNA Code        25 

 



  
 1 

 
 
 
 

1. Summary 

 
The primary goal of this research was the development of an enabling technology for 

DNA computing. It is focused on the construction of a biomolecular architecture 

designed to employ new algorithmic paradigms based on the massively parallel 

computational power of DNA hybridization. The intent is to develop a computing basis to 

eventually overcome the exponential time complexity of many discrete math problems so 

that they can be solved in linear real time. Many of these computationally hard (NP) 

problems are critical to logistics, scheduling and security. In this way, this research 

address computational, national security and knowledge acquisition challenges of the Air 

Force.  In this report we: 

 

1. Give new metrics for cooperative DNA code design that capture key aspects of the 

nearest neighbor thermodynamic model for hybridized DNA duplexes.   

2. Show how DNA computing can be applied to the identification of independent sets in 

a graph. 

3. Show how our software uses our new metrics to construct a biomolecular computing 

architecture to address the identification of independent sets in a graph. 

 

2. Introduction 

 
 DNA codewords are structural and information building blocks in biomolecular 

computing and other biotechnical applications that employ DNA hybridization assays. 

Thermodynamic distance functions are important components in the construction of DNA 

codes. We introduce new metrics for DNA code design that capture key aspects of the 

nearest neighbor thermodynamic model for hybridized DNA duplexes. One version of 

our metric gives the maximum number of stacked pairs of hydrogen bonded nucleotide 

base pairs that can be present in any secondary structure in a hybridized DNA duplex 



  
 2 

without pseudoknots. We introduce the concept of (t-gap) block isomorphic 

subsequences to describe new string metrics that are similar to the weighted Levenshtein 

insertion-deletion metric. We show how our new distances can be calculated by a 

generalization of the folklore longest common subsequence dynamic programming 

algorithm. We give a Varshamov-Gilbert like lower bound on the size of some of codes 

using our distance functions as constraints. We also discuss software implementation of 

our DNA code design methods. 

 In this paper, all variables are nonnegative integers unless otherwise stated.  n   

denotes the set  0, . . . , n  1   and  n   denotes the sequence  1, 2, . . . , n  .   Given two 

sequences     and    , we write       if and only if     is a subsequence of    .  The 

length of sequence     is denoted by  | |  .  We call    n   a string if and only if it is a 

subsequence of consecutive integers, e.g.,    i, i  1, . . . , i  k  .  For  a  b  , we use the 

notation  a, b   for the string of integers between and including  a   and  b.   If  a  b,   

we sometimes write  a   for  a, b.    When we write  

  a1 , b1 , a2 , b2 , . . . , ai, bi, . . . ak , bk   where  ai  bi  ai1 ,   we mean  

  a1 , a1  1, . . . , b1 , a2 , a2  1, . . . b2 , . . . , ai, ai  1, . . . bi , . . . ak , ak  1, . . . bk .  For  

  n,      m   with  | |  | |  , we write  f :      to indicate an increasing 

function  f : i : i    i : i    .  Given    i1 , i2 , . . . , ik   and  f :     , we 

define  f   fi1 , fi2 , . . . , fik  .  If  | |  | |  , then  f :      is unique.  We let  

4n   denote the set of sequences of length  n   with entries in  4  . We identify {0,1,2,3} 

with the symbols for DNA bases {A,C,G,T} .  Thus sequences in  4n   are all DNA 

sequences of length n.  For  x  x 1 , . . . , x n   with  x  4n   and    i1 , i2 , . . . , ik   where  

     n  , we let  x   x   be the subsequence  x i1 , x i2 . . . , x ik  .  Given a non-negative 

real-valued function,    , on  q  , we define  x    
i

x i.   



  
 3 

 

3. Methods, Assumption, Procedures 
 

3.1 Block Isomorphic Subsequences 
 

Definition 1.   For          n,   a substring       is called a block of     if     is not 

subsequence of any substring     of     with    .    A subsequence  x   x    is called 

a block of  x    if     is a block of  .    For          n  , let   i   be the sequence of 

blocks of    , where each element of   i   is less than every element of   i1   .  Let  

b i   and  Bi   be the left and right endpoints of   i.    When the context is clear, 

we just write  b i  ,  Bi   and   i   respectively.  When we write    bi, Bi    i ,   we 

say that it is the block representation of  .   When we write  x   x  i    we say that it is 

the block representation of  x  .   

 

 Block representations are unique.  Let  x  414   and let    14  .  Suppose  

x  2, 0, 1, 2, 2, 3, 0, 3, 2, 0, 0, 1, 3, 2  and    2, 3, 4, 7, 9, 10, 13, 14 .  Then  

x   0, 1, 2, 0, 2, 0, 3, 2   and the block representations are:    2, 4,    7, 7,    9, 10,    

13, 14   and  x   x 2,4 ,7,7 ,9,10 ,13,14   . 

 

Definition 2.   For  2  t  n  1  , we define 

G tn          n : bi1    Bi   t.  

We call  G tn   the set of t-gap sequences of (n). 

 

 Note that          n          G 2 n   and  2  t 1  t 2  n  1     

G t2 n  G t1 n.   

 



  
 4 

Definition 3.   Let    n,      m   with  | |  | |  .  Let  f :      be unique.  We 

say that     and     are block isomorphic and write          if:       is a string 

 f     is a string.  For  x  qn  ,  y  qm   we say that  x    and  y   are block 

isomorphic, denoted by  x   y  , if  x   y   and            . 

 

Proposition 1.  Suppose          and  f :      is unique.  Then       is a block in  

   if and only if  f   is a block in    . 

 

Definition 4.  Let  2  t  minn, m  1   and suppose    n,      m   with  

| |  | |  .  We say that     and     are t-gap block isomorphic and write  


t
 

  if and 

only if    G tn,      G tm   and       .    For  x  qn  ,  y  qm  ,we say that  

x    and  y   are t-gap block isomorphic, denoted by  
x 

t
 y ,

  if and only if  x   y   

and  


t
 

 . We say that  x   and  y   have a common t-gap block isomorphic subsequence 

if and only if there are    n,      m   with  
x 

t
 y

 . Note that             

2
 

  and      t2

   
   t1

 
  when  t 1  t 2 .   So,  we just write          and  x   y   

to denote      2
 

  and  
x 

2
 y

  respectively .   

 

Example 1.   Let  x , y, z, w  413   and   i  13   with x=1, 1, 2, 0, 2, 3, 3, 0, 1, 1, 2, 0, 

1; y=2, 0, 2, 3, 3, 0, 1, 1, 1, 1, 2, 0, 3; z=3, 2, 0, 2, 1, 1, 1, 1, 1, 0, 3, 2, 0; w=1, 1, 1, 2, 0, 

3, 2, 0, 2, 0, 3, 3, 3 .     Let   1   [3,5], [8,8], [11,12] ;     2   [1,3], [6,6], [11,12] ;    

 3   [2,4], [10,10], [12,13] ;     4   [4,5], [7,10] .   Then  

x  1  y 2  z 3  w  4  2, 0, 2, 0, 2, 0.   Since   1      2      3   4 ,   we have that  

x  1  y 2     z 3  w  4 .   Since   1 , 2  G 3 n   and   3  G 3 n,   we have that  



  
 5 

x  1
3
 y 2

3
 z 3 .

  

3.2 Block Insertion-Deletion Codes  

  

Definition 5.  For  x , y  qn  , we define:  ,q x , y  maxz : z  x   and  z  y   

and  L,q x , y  minx ,y   x , y.   We say that  x , y   is the maximum 

weight of a common subsequence to  x   and  y   and  Lx , y   is called the weighted 

Levenshtein insertion-deletion distance.   Lx , y   is a metric. When  x    |x  |,   we 

write  Lx , y   for  Lx , y  . 

 

Definition 6.  For  2  t  n  1   and  x , y  qn  . We define:  

,q
t x , y  maxx   : x 

t
 y.

 

,q
t x , y  minx,y   ,q

t x , y.
 

When the context for  q   is clear, we simply write  
t x , y   and  t x , y.    We say that  

t x , y   is the weight of the longest common t-gap block subsequence of  x   and  y  . 

When  x    |x  |,   we write   tx , y   and   tx , y   for  
t x , y   and  t x , y   

respectively.  For  t  1,   we define  1 x , y  Lx , y   and   1 x , y  Lx , y.   

 

Proposition 2.  
t x , y   is a metric on  qn  . 

 

Definition 7.  A t-gap block insertion-deletion q-ary code of weighted     distance d is a 

subset  C,   of  qn ,   such that:  x  y  C  
t x , y  d . 

 

Theorem 1.  Let  x    |x  |.   In  qn  , there is a 2-gap block insertion-deletion  C   

of  d  n  k   with 



  
 6 

|C |  qk 
j1

k
k1
j1

nk1
j

2
1

.
 

4. Results, Discussion  

4.1 Computing  t x , y   
 

 For  1  m  n  , consider the string  m  1, n  . For  x , y  qn  , let suf(x,y) be 

the length of the longest common suffix between  x   and  y  .  Then  sufx , y  0   if  

x n  yn   and  sufx , y  n  m   if  x m 1 , n  y m 1 , n   and  x m  ym  .  For  x  qn  , 

we have that  x 1,i   is the first  i   entries of  x   and  x 1,n  x .     

 

 Proposition 3.  Let  1  t  n  1.    For  x , y  qn   and  t  i, j  n,   define  

M,i,j
t  t x 1,i , y 1,j .    Let  r  x nr1,n    and  sufx , y  k  .  Define  

D,i,j
t  maxr  M,irt1,jrt1

t : 1  r  k  if  k  1   and  D,i,j
t  0   if  k  0.    

Then  

M,i,j
t  t x 1,i , y 1,j   maxM,i1,j

t , M,i,j1
t , D,i,j

t .  
 

When either  i   or  j   is less than or equal to  t,   the initial conditions needed for the 

computation of  t x , y   are  
t x 1,i , y 1,j   x 1,i    if and only if  x 1,i   is a 

substring of  y 1,j  . 

 

Example 2.  Let  x  0, 1, 2, 3, 1, 3, 0, 1   and  y  3, 0, 1, 3, 2, 0, 3, 1  .  Figure 1 and Figure 

2 are  M2   and  M3   where  x    | |.   Figure 3 and Figure 4 are  M
2   and  M

3   

where  
x    

i
x i  1.

   Below each figure, we give an example of t-gap 

isomorphic subsequences with  x    y   tx , y     tx , y.    



  
 7 

Fig. 1: x 1,2,4,5  y 2,3,7,8

0 1 1 1 1 1 1 1

0 1 2 2 2 2 2 2

0 1 2 2 2 2 2 2

1 1 2 2 2 2 3 3

1 1 2 2 2 2 3 4

1 1 2 2 2 2 3 4

1 2 2 2 2 3 3 4

1 2 3 3 3 3 3 4

Fig. 2: x 1,2,8,8
3
 y 2,3,8,8

0 1 1 1 1 1 1 1

0 1 2 2 2 2 2 2

0 1 2 2 2 2 2 2

1 1 2 2 2 2 2 2

1 1 2 2 2 2 2 3

1 1 2 2 2 2 3 3

1 2 2 2 2 3 3 3

1 2 3 3 3 3 3 3

 

Fig. 3: x 4,6,8  y 1,4,7

0 1 1 1 1 1 1 1

0 1 3 3 3 3 3 3

0 1 3 3 4 4 4 4

4 4 4 5 5 5 7 7

4 4 4 5 5 5 7 9

4 4 4 8 8 8 9 9

4 5 5 8 8 8 9 9

4 5 7 8 8 9 9 10

Fig. 4: x 1,4,5
3
 y 2,7,8

0 1 1 1 1 1 1 1

0 1 3 3 3 3 3 3

0 1 3 3 3 3 3 3

4 4 4 4 4 4 4 4

4 4 4 4 4 4 5 7

4 4 4 6 6 6 7 7

4 5 5 6 6 6 7 7

4 5 7 7 7 7 7 7

 

4.2 Sequences of t-Strings 

 

 In this section, we apply the results of previous sections  to sequences of strings of 

length t (with particular attention to  t  2   that naturally arise from  x  qn .    The 

goal is to then apply these results to the modeling of DNA hybridization distances. 

 



  
 8 

 Definition 8.  For  ,   n   and  1  t  n  1,   let   t     be defined by:  

i   t  i, i  t  1    . If  | |  | |   , then for the unique  f :     , we define  
t   

as:  i  
t  i, i  t  1     and  fi, fi  t  1  .    We define  t     by  

t  f
t .   

 

Example 3.  Let  ,   16   be given in their block representations with    1, 4  ,  

7, 10  ,  12, 15   and    2, 8  ,  12, 16.   Then   2  ,  2  ,  
2   and  2   are:  

 2  1, 3  ,  7, 9  ,  12, 14;    2  2, 7, 12, 15;    
2  1, 3, 7, 8, 12, 14;    

2  2, 4, 6, 7, 13, 15  .   

Then   3  ,  3  ,  
3   and  3   are:   3  1, 2, 7, 8, 12, 13;    3  2, 6  ,  12, 14;    


3  1, 2, 7, 7, 12, 13;    3  2, 3, 6, 6, 13, 14  .  A careful inspection of  

2  ,  

2   and  
3 ,    3   demonstrates the general result that  

t

t
 t  . 

 

 For  x , y  qn   with  x   y  , we have that  i  
t   if and only if  i   is the first 

index in a common t-string ,  x i,it1   y fi,fit1  ,   of the common subsequence  

x   y   of  x   and  y  .  Thus  |
t |   is the number of common t-strings that occur in the 

common subsequence  x   y   of  x   and  y  . In particular,  |
2 |   is the number of 

common 2-strings that occur in the common subsequence  x   y   of  x   and  y  .  This 

measure is of interest to us because when two DNA strands have a secondary structure in 

a duplex, the thermodynamic weight (e.g., free energy) of nearest neighbor stacked pairs 

of that secondary structure is a measure (not the measure) of the thermodynamic stability 

of the duplex with the given secondary structure. Since every secondary structure in the 

DNA duplex  x : y   between  x   and the complement,  y ,   of  y   corresponds to a 

common subsequence,  x   y ,   between  x   and  y,   we have that  |
2 |   gives us the 

number of nearest neighbor stacked pairs in the  x : y   duplex with the secondary 



  
 9 

structure associated with  x   y  .  In general,  |
t |   gives us the number of common t-

stems in the  x : y   duplex with the secondary structure associated with  x   y .  We 

now show how we compute the “total weight” of the common 2-strings that occur in the 

common subsequence  x   y   of  x   and  y  . 

 

Definition 9.   Suppose  2  t  n  1.    Given a string  a, b  n   and  x  qn  , let  

dq x a ,b     be the unique number in  qt    whose q-ary decimal representation is  

x a x a1 x a2 . . . x b .   For  x  qn  , let  x t  qtnt   be defined as  

x t  dq x i,it1   i1
nt1 .    For example, if  x   2, 3, 3, 0, 3, 0, 2, 2, 1, 1, 2, 0, 2  413  

, then  x 2    11, 15, 12, 3, 12, 2, 10, 9, 5, 6, 8, 2  1612   and   x 3     47, 60, 51, 12, 

50, 10, 41, 37, 22, 24, 34  6411 .   

 

Definition 10.  Suppose  2  t  n  1   . Let     be a weight function on  qt.    Then 

for  x , y  qn ,   we define:  
t x , y  max x  

t
t


: x   y   and  


t x , y  min x t ,y t  

t x , y.    If  x    | |,  then we write  

 tx , y   and   tx , y   for  
t x , y   and  

t x , y   respectively. 

 

Proposition 4.  Suppose  2  t  n  1   . Let     be a weight function on  qt.    Then 

for  x , y  qn ,   we have:  


t x , y  ,q t

t x t, y t
 

Definition 11.   A q-ary code of     weighted t-stem distance d is a subset  C   of  qn   

such that:  x  y  C  
t x , y  d.   If  t  2,   we call such a  C   a q-ary code of  

   weighted stacked pair distance d.  Thus if  C   is a     weighted code of t-stem 

distance d, then:  x  y  C  x t  ,q t
t x t, y t  d  and  



  
 10 

y t  ,q t
t x t, y t  d.   If  x    |x  |,   we simply call such a  C   a t-stem 

code of distance d .   

 

 From a DNA duplex point of view, with       being the thermodynamic 

weight of the (virtual) stacked pairs of nucleotides (see Table 1,)  x 2 
   is the 

absolute value of nearest neighbor free energy of the duplex  x : x  .  Thus, if  C   is a 

(A,C,G,T) quaternary code of     weighted stacked pair distance d, then  x  y  C   

implies that the thermodynamic stability of each of the duplexes  x : x   and  y : y   is at 

least “d greater than” the thermodynamic stability of the duplex  x : y .   Moreover, if  C   

is a (A,C,G,T) quaternary t-stem code of distance d, then  x  y  C   implies  x : x   and  

y : y   each have at least “d more” common t-stems than are in any secondary structure 

for duplex  x : y .    The main point of application is that  
2 x , y    is a measure of the 

nearest neighbor stability of the DNA duplex  x : y   and   tx , y   is the maximum 

number of t-stems that can form in any secondary structure of  x : y .    For a 2-stem code  

C   of distance  d  n  1  k  , we have for  x  y  C,   that the maximum number of 

stacked pairs in a secondary structure of the duplex  x : y   is at most  k   while the 

number of stacked pairs in each of the  x : x   and  y : y   duplex is  n  1  . 

 

Theorem 2.  In  qn ,   there is a 2-stem code,  C,   of distance  d  n  1  k   with:  

|C |  qk 
j1

k
qj k1

j1
nk

j

2
1

.
 



  
 11 

 

5. Conclusions 
 

5.1 Applications to DNA Hybridization Distance Modeling 

 

 Single strands of DNA are, abstractly,  A, C, G, T  -quaternary sequences, with 

the four letters denoting the respective nucleic acids. DNA sequences are oriented; e.g.,  

5 AACG3    is distinct from  5 GCAA3   , but it is identical to  3 GCAA5   . The 

orientation of a DNA strand is usually indicated by the  5   3  , 3   5    notation that 

reflects the asymmetric covalent linking between consecutive bases in the DNA strand 

backbone.  In this paper, when we write DNA molecules without indicating the direction, 

it is assumed that the direction is  5   3   . Furthermore, DNA is naturally double 

stranded. That is, each sequence normally occurs with its reverse complement, with 

reversal denoting that two strands are oppositely directed, and with complementarity 

denoting that the allowed pairings of letters, opposing one another on the two strands, are  

A, T   or  G, C  ---the canonical Watson-Crick base pairings. Therefore, to obtain the 

reverse complement of a strand of DNA, first reverse the order of the letters and then 

substitute each letter with its complement. For example, the reverse complement of  

AACGTG   is  CACGTT  . If  x  AACGTG  , then we let  x   denote it reverse 

complement  CACGTT  . We let x   denote  x   listed in reverse  3   5    order.  As DNA 

sequences,  x   and  x   are identical, i.e.,  x  5 x 1 , . . . , x n 3   x  3 x n , . . . , x 1 5    

 

 A Waston-Crick (WC) duplex results from joining reverse complement sequences 

in opposite orientations, e.g.,  

x  : x   =  
5 AACGTG3 

3 TTGCAC5   .  

 

 Whenever two, not necessarily complementary, oppositely directed DNA strands 

“mirror” one another sufficiently, they are capable of coalescing into a DNA duplex. The 



  
 12 

process of forming DNA duplexes from single strands is referred to as DNA 

hybridization. The greatest energy of duplex formation is obtained when the two 

sequences are reverse complements of one another and the DNA duplex formed is a WC 

duplex. However, there are many instances when the formation non-WC duplexes are 

energetically favorable. In this paper, a non-WC duplex is referred to as a cross-

hybridized (CH) duplex. 

     An  n   DNA code is a collection of single stranded DNA sequences of length  n .  In 

DNA hybridization assays, the general rule is that formation of WC duplexes is good, 

while the formation of CH duplexes is bad.  A primary goal of DNA code design is be 

assured that a fixed temperature can be found that is well above the melting point of all 

CH and well below the melting point of all WC duplexes that can form from strands in 

the code. (It is also desirable for all WC duplexes to have melting points in a narrow 

range.) Thus the formation of any WC duplex must be significantly more energetically 

favorable then all possible CH duplexes. A DNA code with this property is said to have 

high binding specificity. High binding specificity is akin to a high signal-to-noise ratio.  

 

 A natural simplification for formulating binding specificity is to base it upon the 

maximum number of WC (inter-strand, non-covalent hydrogen) base pair bonds between 

complementary letter pairs which may be formed between two oppositely directed 

strands. Then for  x , y  C  , an upper bound on this maximum number of base pair bonds 

that can form in the  x : y   duplex is the maximum length of a common subsequence to  

x   and  y  .  In short, two single stranded DNA sequences  x   and  y   of length n can 

form  d   base pairs bonds in a duplex only if   1 x , y   n  d  .  This doesn’t mean that  

x   and  y   will form  d   base pair bonds in a hybridization assay, it just says they could 

never form more than d base pair bonds. 

 

 If the binding specificity were solely dependent on the number of base pair bonds, 

then n-DNA codes constructed by using   1 x , y   as the distance function could be used 

in hybridization assays with assured high binding specificity. This is because if  n  d   is 



  
 13 

large enough, then one could find a temperature that exceeds the  d   base pair bonding 

threshold of all  x : y   CH duplexes, but is below the melting point of each  x : x   WC 

duplex in which  n   base pair bonds form.  

 

 However, while the melting point of DNA duplexes depends, in part, on the 

number of base pair bonds, the state of the art model of DNA duplex thermodynamics is 

the Nearest Neighbor Model (NN). In the NN model, thermodynamic (e.g., free energy) 

values are assigned to loops rather than base pairs. We now briefly discuss some key 

aspects of the NN model. 

 

 Consider two oppositely directed DNA strands  x  5 x 1 , x 2 , . . . , x i , . . . , x n 3    and  

y  3 y1 , y2 , . . . , yj , . . . , yn 5 

  where  yj   denotes the complement to base  yj  .  A 

secondary structure of the DNA duplex  x : y   is a sequence of pairs of complementary 

bases  x ir , yjr   where  x ir   and  yjr   are subsequences of  x   and  y   respectively.  

Clearly the duplex  x : y   can have many secondary structures. An important issue is to 

understand which secondary structure in the most energetically favorable. 

 

 The collection of complementary pairs in a given secondary structure of a duplex 

partitions the duplex in to pairs of substrings (or subduplexes) 

that have the  x ir, yjr   and  x ir1 , yjr1    as endpoints.  For example, in the  x : y   

duplex presented as:   

5 x 1 , x 2 , . . . , x i1 3  , . . . ,5 x ir , . . . , x ir1 3  , . . . ,5 x ik , . . . , x n 3 

3 y1 , y2 , . . . , yj1 5  , . . . ,3 yjr , . . . , yjr1 5  , . . . ,3 yjk , . . . , yn 5 

 

 each pair  

5 x ir , . . . , x ir1 3 

3 yjr , . . . , yjr1 5    

 

of substrings (separated by *) is an elementary substructure called a loop of the given 



  
 14 

secondary structure  x ir , yjr   of the given duplex  x : y  . If each of the strings in a 

loop are of length 2, e.g.,  

5 x ir , x ir1 3 

3 yjr , yjr1 5 

 , 

then that loop is called a stacked pair. 

 

Example 4.  We use mix of lower case and upper case letters to help identify the 

secondary structure.  Consider the duplex 

5 ggCaTaTcatACt3 

3 TccAAttGgtaGa5   

  where the secondary structure is  g, c, g, c, a, t, a, t, c, g, a, t, t, a, t, a . Loops 

are  E 1 , . . . , E 8   and are listed left to right:   

g  gg  gGc  aTa  aTc  ca  at  tACt
Tc  cc  cAAt  tt  tGg  gt  ta  aGa  

    E 1        E 2        E 3     E 4        E 5        E 6        E 7        E 8  . 

 The free energy,  G,   of the duplex predicted by the NN model is approximately  

i1

8

   

G i   where  G i   is the free energy assigned to loop  E i  .  However, in many cases, the 

most stabilizing features of the structure come from the stacked pairs i.e.,  E 2  ,  E 6  , and  

E 7 ,   and the free energies of stacked pairs are the most accurately measured. See [].  

The free energies for most non-stacked loops are approximated from the free energy for 

stacked pairs with the same terminal pairs. For example, the free energy of  

E 3 
5 gCa3 

3 cAAt5    would be approximated by adding a “penalty” to the free energy for 

the measured free energy for the stacked pair  
5 ga3 

3 ct5    (that does not appear in the 

above secondary structure.)  In most cases, the penalty takes on a positive value while all 

of the free energies for stacked pairs are negative.  It is therefore reasonable to assume 

that if one only considers the free energies for the stacked pairs, then their sum would be 



  
 15 

a lower bound for the NN free energy for the given duplex with the given secondary 

structure. 

 

 Consider two identically directed DNA strands  x  5 x 1 , x 2 , . . . , x i , . . . , x n 3    and  

y  5 y1 , y2 , . . . , yj , . . . , yn 3  .   For computational purposes, we define the idea of a virtual 

secondary structure between these two identically directed strands even thought no such 

structure would naturally form. A virtual secondary structure of the virtual DNA duplex  

x : y   is a sequence of pairs of identical bases  x ir , yjr   where  x ir   and  yjr   are 

subsequences of  x   and  y   respectively. In other words, a virtual secondary structure of 

the virtual duplex  x : y   is a common subsequence  x   y   of  x   and  y  . Then the 

virtual duplex  x : y   has the virtual secondary structure  x ir , yjr   if and only if the 

actual duplex  x : y   (where  x  5 x 1 , x 2 , . . . , x i , . . . , x n 3    and  

y  3 y1 , y2 , . . . , yj , . . . , yn 5 
   has the actual secondary structure of pairs of 

complementary bases  x ir , yjr   where  x ir   and  yjr   are subsequences of  x   and  

y   respectively. A stacked pair,  

5 x ir , x ir1 3 

3 yjr , yjr1 5  ,
  exists in the actual secondary structure  

x ir , yjr   if and only if the corresponding virtual stacked pair,  

5 x ir , x ir1 3 

5 yjr , yjr1 3  ,
  exists 

in the virtual secondary structure of the virtual duplex  x : y.    Thus, there exists a virtual 

stacked pair in a virtual secondary structure  x   y   if and only if  

x i, x i1   yfi, yfi1    is a common 2-string of the common subsequence  x   y   

where  f :      is unique. 

 

 Identifying virtual stacked pairs with their natural representation, the virtual free 

energy      values can be associated to the negative of their corresponding values  

G    for actual stack pairs. The actual values are given in KCAL/mole measured at 37C 



  
 16 

and with specified ionic concentrations. Table 1 gives the values with their corresponding 

virtual stacked pairs. Since the virtual stacked pair is a pair of identical 2-strings  

x i, x i1   yfi, yfi1   , we can represent this virtual stacked pair by  x i, x i1    and 

denote its virtual free energy by  x i , x i1   . The  i, j th   entry of  Figure 5  is the value 

of  i, j  , e.g.,  C, T  1. 28  . (So  C, T   denotes the free energy associated with 

the  
5 CT3 

3 GA5    naturally occurring stacked pair.  We take     as our weight function on  

42   . 

 A C G T

A 1.00 1.44 1.28 0.88

C 1.45 1.84 2.17 1.28

G 1.30 2.24 1.84 1.44

T 0.58 1.30 1.45 1.00
 

Figure 5. Thermodynamic weight of virtual stacked pairs. 

 

 Let  x : y   be an actual duplex and let  Gx : y    be the NN computation of the 

free energy of the  x : y   duplex. The main point of all of this is that it is quite 

reasonable to assume that in most cases:  
2 x , y  Gx : y .    From a DNA duplex 

point of view, with     being the thermodynamic weight of the virtual stacked pairs of 

nucleotides, we have:  x 2 

 Gx : x   .  Thus if  C   is a     weighted stacked 

paired  A, C, G, T   quaternary code of distance  d  , then:  x  y  C   
2 x , y  d.   

This implies that the thermodynamic stability,  Gx : x    and  Gy : y   , of each 

(all) of the WC duplexes  x : x   and  y : y  , respectively would each be at least “d 

greater than” the thermodynamic stability , Gx : y ,   of the (any)  x : y   CH duplex 

where  x  y  C.    Thus, n-DNA codes closed under complementation  

x  C  x  C   constructed by using   
2 x , y   as the distance function could be 



  
 17 

used in hybridization assays with high binding specificity. 

 

 

 Example 5. Given DNA sequences  x  GTTATAGGCCGAG   and  y     CGTC    

GTGTATATT   of length 13, consider the virtual secondary structure  x   y   with  

  1, 6   and    5, 6, 8, 11.   We have that  
2  1, 1, 3, 5   and  

2  5, 5, 8, 10.    We use lower case letters to exhibit the common subsequences that 

represent the virtual secondary structures represented by  x   y  :   

gttataGGCCGAG
CGTCgtGtataTT  . 

Identify  0  A  ,  1  C  ,  2  G   and  3  T   and convert the DNA sequences 

accordingly. Then  x 2   11, 15, 12, 3, 12, 2, 10, 9, 5, 6, 8, 2   and  

y 2   6, 11, 13, 6, 11, 14, 11, 12, 3, 12, 3, 15   where the (bold faced) block isomorphic 

subsequence,  x  
2

2   y2
2 ,  represents the four virtual stacked pairs  gt, ta, at, ta   in the 

displayed virtual secondary structure  x   gttata  y .   Using the     in Figure 5, we 

have that  x  
2

2 


 3. 48  . However,  

2 x , y  3. 61.   This is because the virtual 

secondary structure  x   y   with    1, 2, 10, 11, 13, 13   and    2, 5, 7, 7   

depicted using lower case letters as:   

gtTATAGGCcgAg
CgtcgTgTATATT  

  has  
2  1, 1,    10, 10   and  2  2, 2,    4, 4.   Then  x


2

2   11, 6  y2
2 

  

represents the virtual stacked pairs gt and cg in the virtual secondary structure  

x   gtcgg  y.   Finally, we have that  


2 x , y  x


2
2 


 3. 61.

 

  

Example 6. Given DNA sequences  x  AATCCAACATTATTGC   and  y     

GTCACATCATCAAGCC   and using the     in Figure 5, we have  x 2 

 18. 39,    



  
 18 

y 2 

 20. 7   and  

2 x , y  8. 19.    Thus   
2 x , y  10. 20.    We also have that  

x 2    0,3,13,5,4,0,1,4,3,15,12,3,15,14,9 ;    

 y 2   11, 13, 4, 1, 4, 3, 13, 4, 3,  13, 4, 0, 2, 9, 5.    

 

 There are at most six stacked pairs in any virtual secondary structure between  x   and  

y,   i.e.,   2 x , y   2 x 2 , y 2  6.    A virtual secondary structure that has six 

stacked pairs is  x   x 3,4,7,10,12,13,15,16  y 2,6,8,9,14,15  y .    These six stacked 

pairs are represented by the common block isomorphic subsequence  

x  
2

2   x 3,3,7,9,12,12,15,15
2   y 2,2,4,6,8,8,14,14

2 
       y2

2 .    In this case,  


2 x , y  2 x 2 , y 2  x 3,3,7,9,12,12,15,15

2 


 8. 19.    We also have that  

 x 3  2, 9, 36, 20, 16, 1, 4, 18, 10, 39, 33, 10, 42, 45 

y 3  57, 35, 17, 4, 18, 9, 35, 18, 9, 35, 16, 3, 13, 53.  

  Since   3 x , y      3 x 3 , y 3        2,   we have that most number of 3-stems in any 

secondary virtual secondary structure between  x   and  y   is  2.   Note that 

x 7,8
3 

3
 y 4,5

3 .
  Note that the virtual secondary structure  

x   x 3,4,7,10,12,13,15,16  y 2,6,8,9,14,15  y   has exactly two 3-stems, namely  

x 7,9  y 4,6  ACA   and  x 8,10  y 5,7  CAT.   

 
5.2 Biomolecular Computing Architecture 

 

 A DNA bit string of length N is a DNA molecule (single long strand) that consists 

of N distinct nonoverlapping substrands.   Suppose we have a DNA code C of size 4N 

partitioned into coding strands (2N) and probe stands (2N). For example, consider the 

DNA code below. It has twenty codewords strands each 12 bases long.  Ten of these are 

labelled T i   or F i   and ten are labelled Probe(T i  ) or Probe(F i  ). Probe(X) is the WC 



  
 19 

complement of X. This allows use to code and read 32 DNA bit strings.  The DNA 

library has 32 longer strands of 60 bases of the form X 1  X 2  X 3  X 4  X 5   where X i  

=T i   or F i   as given below.   See Figure 6. 

 

DNA Computing Strand Engineering

A A A A A A A A C C=T1
G G T T T T T T T T  =BEAD PROBE (T1)

T T T C C A A A A A, =F1
T T T T T G G A A A = BEAD PROBE (F1)

T T T C T T A A C C=T2
G G T T A A G A A A= BEAD PROBE (T2)

A C T A A C A A A A=F2
T T T T G T T A G T= BEAD PROBE (F2)

C A T A A A A C A C=T3
G T G T T T T A T G= BEAD PROBE (T3)

A T C T T T T C A A=F3
T T G A A A A G A T= BEAD PROBE (F3)

C A A T C C A T T A=T4
T A A T G G A T T G= BEAD PROBE (T4)

C C T T C T A A A T=F4
A T T T A G A A G G= BEAD PROBE (F4)

A C T C C T A A T A=T5
T A T T A G G A G T= BEAD PROBE (T5) 

T C T C T C T A C T, Strand C10=F1
A G T A G A G A G A= BEAD PROBE (F5)

1. A A A A A A A A C C -T T T C T T A A C C-C A T A A A A C A C-T4-T5
2. A A A A A A A A C C -T T T C T T A A C C-C A T A A A A C A C-T4-F5
3. A A A A A A A A C C -T T T C T T A A C C-C A T A A A A C A C-F4-T5
4. A A A A A A A A C C -T T T C T T A A C C-C A T A A A A C A C-F4-F5
5. A A A A A A A A C C --T T T C T T A A C C  -A T C T T T T C A A-T4-T5
6. A A A A A A A A C C --T T T C T T A A C C  -A T C T T T T C A A-T4-F5
7. A A A A A A A A C C -T T T C T T A A C C  -A T C T T T T C A A-F4-T5
8. A A A A A A A A C C -T T T C T T A A C C  -A T C T T T T C A A-F4-F5
9. A A A A A A A A C C-A C T A A C A A A A-C A T A A A A C A C-T4-T5
10. A A A A A A A A C C-A C T A A C A A A A-C A T A A A A C A C-T4-F5
11. A A A A A A A A C C-A C T A A C A A A A-C A T A A A A C A C-F4-T5
12. A A A A A A A A C C-A C T A A C A A A A-C A T A A A A C A C-F4-F5
13. A A A A A A A A C C-A C T A A C A A A A -A T C T T T T C A A-T4-T5
14. A A A A A A A A C C-A C T A A C A A A A -A T C T T T T C A A-T4-F5
15. A A A A A A A A C C-A C T A A C A A A A -A T C T T T T C A A-F4-T5
16. A A A A A A A A C C-A C T A A C A A A A -A T C T T T T C A A-F4-F5
17.  T T T C C A A A A A   -T T T C T T A A C C-C A T A A A A C A C-T4-T5
18.  T T T C C A A A A A   -T T T C T T A A C C-C A T A A A A C A C-T4-F5
19.  T T T C C A A A A A   -T T T C T T A A C C-C A T A A A A C A C-F4-T5
20.  T T T C C A A A A A   -T T T C T T A A C C-C A T A A A A C A C-F4-F5
21.  T T T C C A A A A A   -T T T C T T A A C C  -A T C T T T T C A A-T4-T5
22.  T T T C C A A A A A   -T T T C T T A A C C  -A T C T T T T C A A-T4-F5
23.  T T T C C A A A A A   -T T T C T T A A C C  -A T C T T T T C A A-F4-T5
24.  T T T C C A A A A A   -T T T C T T A A C C  -A T C T T T T C A A-F4-F5
25.  T T T C C A A A A A  -A C T A A C A A A A-C A T A A A A C A C-T4-T5
26.  T T T C C A A A A A  -A C T A A C A A A A-C A T A A A A C A C-T4-F5
27.  T T T C C A A A A A  -A C T A A C A A A A-C A T A A A A C A C-F4-T5
28.  T T T C C A A A A A  -A C T A A C A A A A-C A T A A A A C A C-F4-F5
29.  T T T C C A A A A A  -A C T A A C A A A A -A T C T T T T C A A-T4-T5
30.  T T T C C A A A A A  -A C T A A C A A A A -A T C T T T T C A A-T4-F5
31.  T T T C C A A A A A  -A C T A A C A A A A -A T C T T T T C A A-F4-T5
32.  T T T C C A A A A A  -A C T A A C A A A A -A T C T T T T C A A-F4-F5

DNA CODE
DNA LIBRARY=
DNA BITSTRINGS

Maximum CH free energy parameter: 5
Nearest neighbor WC free energy LOWER BOUND =10
Nearest neighbor WC free energy UPPER BOUN =13

Ligation
+

PCR

 
  

Figure  6.  DNA Strand Engineering  

 

As indicated above, we identify DNA bit strings and binary sequences. For 

I ⊆ [N] and (ei )i∈I  a binary sequence, let K be the following a subset of binary N-

sequences defined as K = {(bi) : bi = ei for some i ∈I}.  K is the set of all binary 

sequences that satisfy the disjunctive clause K' over N Boolean terms, each of which is a 

variable xi (if ei =1) or its negation ~ xi ( if ei = 0 .)  The main "computing" idea is an 

iteration of the following: Given a subset T of DNA bit strings and a set K defined above, 

the subset T ∩ K can be extracted from the set T by hybridization.  

 

We now discuss a problem that is of particular interest to us.   

 



  
 20 

Problem 1.  Let P1,  P2, ...,  Pm  be fixed subsets of [N].   

 

a.  Find all S⊂ [N] with S⊄ Pi  for all i with 1 ≤ i ≤ m . 

b.  Find all T ⊂ [N] with Pi ⊄ T  for all i with 1 ≤ i ≤ m . 

 

Both of these problems are related and are simplified forms of the general SAT 

problem. They can be solved by the method described above.  (These are simplifications 

because no negations appear in the clauses.)  

 

There is one important difference. In the SAT problem, only one solution needs to 

be found. Here all solutions are required. 

 

  Let (bi ) be a binary n-sequence. As above, let K i = {(bj) : bj = 1 for some j∉Pi}. 

Clearly all S⊄ Pi  for all i with 1 ≤ i ≤ m  is the set of all S with incidence vector in 
  

Ki
i=1

m

I .  

In the DNA bit string representation, Ki = {(bj) : bj = rj for some j∉Pi}.  The associated 

filter Fi  consists of {lj : j ∉Pi} .  If a set S of DNA bit strings of length N is passed 

through Fi , then only the bit strings in K i  remain in the gel of Fi . Starting with all 

possible DNA bit strings and iterating the filter process outlined above m times, we arrive 

at Fm .  Fm  contains all the DNA bit string representations of the solutions to Problem 1a.  

Problem 1b can transformed into Problem 1a because Pi ⊄ T  if and only if 

[N] − T ⊄ [N] − Pi .  

The most straightforward application of the above problem is in the identification 

of independent sets in a graph.  If one takes all the edges of a simple graph G as the 

collection {Pi} , then the set of all T is the collection of independent sets in G.  See 

Figures 7-10. 



  
 21 

DNA Computing for Independent Sets

1 2 k

i

i

 Let Q , Q ,...Q  be fixed subsets of {1,2,...,n}.  

a.  Find all subsets S  {1,2,...,n}  with  S Q  for i with 1 i k.
b.  Find all subsets T  {1,2,...,n}  with  Q T for i with 1 i k

⊆ ⊄ ≤ ≤
⊆ ⊄ ≤ ≤

1 6

i

 Let {1,2},{1,4},{2,3},{2,5},{3,4},{4,5}=Q ,...,Q  be fixed subsets of {1,2,...,5}.  
Finding all subsets T  {1,2,...,n}  with  Q T for i with 1 i 6, is finding all independent sets
in G or all cliques

⊆ ⊄ ≤ ≤
 in the complement G'.

G = G’=
1

5

4

2

3

1

2

3

4

5

 
Figure 7.  Independent Sets Problem  

T T T T T G G A A A

T T T T G T T A G T

9. A A A A A A A A C C-A C T A A C A A A A-C A T A A A A C A C-T4-T5
10. A A A A A A A A C C-A C T A A C A A A A-C A T A A A A C A C-T4-F5
11. A A A A A A A A C C-A C T A A C A A A A-C A T A A A A C A C-F4-T5
12. A A A A A A A A C C-A C T A A C A A A A-C A T A A A A C A C-F4-F5
13. A A A A A A A A C C-A C T A A C A A A A -A T C T T T T C A A-T4-T5
14. A A A A A A A A C C-A C T A A C A A A A -A T C T T T T C A A-T4-F5
15. A A A A A A A A C C-A C T A A C A A A A -A T C T T T T C A A-F4-T5
16. A A A A A A A A C C-A C T A A C A A A A -A T C T T T T C A A-F4-F5
17.  T T T C C A A A A A   -T T T C T T A A C C-C A T A A A A C A C-T4-T5
18.  T T T C C A A A A A   -T T T C T T A A C C-C A T A A A A C A C-T4-F5
19.  T T T C C A A A A A   -T T T C T T A A C C-C A T A A A A C A C-F4-T5
20.  T T T C C A A A A A   -T T T C T T A A C C-C A T A A A A C A C-F4-F5
21.  T T T C C A A A A A   -T T T C T T A A C C  -A T C T T T T C A A-T4-T5
22.  T T T C C A A A A A   -T T T C T T A A C C  -A T C T T T T C A A-T4-F5
23.  T T T C C A A A A A   -T T T C T T A A C C  -A T C T T T T C A A-F4-T5
24.  T T T C C A A A A A   -T T T C T T A A C C  -A T C T T T T C A A-F4-F5
25.  T T T C C A A A A A  -A C T A A C A A A A-C A T A A A A C A C-T4-T5
26.  T T T C C A A A A A  -A C T A A C A A A A-C A T A A A A C A C-T4-F5
27.  T T T C C A A A A A  -A C T A A C A A A A-C A T A A A A C A C-F4-T5
28. T T T C C A A A A A  -A C T A A C A A A A-C A T A A A A C A C-F4-F5
29.  T T T C C A A A A A  -A C T A A C A A A A -A T C T T T T C A A-T4-T5
30.  T T T C C A A A A A  -A C T A A C A A A A -A T C T T T T C A A-T4-F5
31.  T T T C C A A A A A  -A C T A A C A A A A -A T C T T T T C A A-F4-T5
32.  T T T C C A A A A A  -A C T A A C A A A A -A T C T T T T C A A-F4-F5

1. A A A A A A A A C C -T T T C T T A A C C-C A T A A A A C A C-T4-T5
2. A A A A A A A A C C -T T T C T T A A C C-C A T A A A A C A C-T4-F5
3. A A A A A A A A C C -T T T C T T A A C C-C A T A A A A C A C-F4-T5
4. A A A A A A A A C C -T T T C T T A A C C-C A T A A A A C A C-F4-F5
5. A A A A A A A A C C --T T T C T T A A C C  -A T C T T T T C A A-T4-T5
6. A A A A A A A A C C --T T T C T T A A C C  -A T C T T T T C A A-T4-F5
7. A A A A A A A A C C -T T T C T T A A C C  -A T C T T T T C A A-F4-T5
8. A A A A A A A A C C -T T T C T T A A C C  -A T C T T T T C A A-F4-F5
9. A A A A A A A A C C-A C T A A C A A A A-C A T A A A A C A C-T4-T5
10. A A A A A A A A C C-A C T A A C A A A A-C A T A A A A C A C-T4-F5
11. A A A A A A A A C C-A C T A A C A A A A-C A T A A A A C A C-F4-T5
12. A A A A A A A A C C-A C T A A C A A A A-C A T A A A A C A C-F4-F5
13. A A A A A A A A C C-A C T A A C A A A A -A T C T T T T C A A-T4-T5
14. A A A A A A A A C C-A C T A A C A A A A -A T C T T T T C A A-T4-F5
15. A A A A A A A A C C-A C T A A C A A A A -A T C T T T T C A A-F4-T5
16. A A A A A A A A C C-A C T A A C A A A A -A T C T T T T C A A-F4-F5

17.  T T T C C A A A A A   -T T T C T T A A C C-C A T A A A A C A C-T4-T5
18.  T T T C C A A A A A   -T T T C T T A A C C-C A T A A A A C A C-T4-F5
19.  T T T C C A A A A A   -T T T C T T A A C C-C A T A A A A C A C-F4-T5
20.  T T T C C A A A A A   -T T T C T T A A C C-C A T A A A A C A C-F4-F5
21.  T T T C C A A A A A   -T T T C T T A A C C  -A T C T T T T C A A-T4-T5
22.  T T T C C A A A A A   -T T T C T T A A C C  -A T C T T T T C A A-T4-F5
23.  T T T C C A A A A A   -T T T C T T A A C C  -A T C T T T T C A A-F4-T5
24.  T T T C C A A A A A   -T T T C T T A A C C  -A T C T T T T C A A-F4-F5
25.  T T T C C A A A A A  -A C T A A C A A A A-C A T A A A A C A C-T4-T5
26.  T T T C C A A A A A  -A C T A A C A A A A-C A T A A A A C A C-T4-F5
27.  T T T C C A A A A A  -A C T A A C A A A A-C A T A A A A C A C-F4-T5
28.  T T T C C A A A A A  -A C T A A C A A A A-C A T A A A A C A C-F4-F5
29.  T T T C C A A A A A  -A C T A A C A A A A -A T C T T T T C A A-T4-T5
30.  T T T C C A A A A A  -A C T A A C A A A A -A T C T T T T C A A-T4-F5
31.  T T T C C A A A A A  -A C T A A C A A A A -A T C T T T T C A A-F4-T5
32.  T T T C C A A A A A  -A C T A A C A A A A -A T C T T T T C A A-F4-F5

X1=T and X2=T

DNA Library

All subsets
not containing
{1,2}

X1=F or X2=F

Edge {1,2}

T T T T T G G A A A=Probe(F1)

T T T T G T T A G T=Probe(F2)

A A A A A A A A C C-A C T A A C A A A A-C A T A A A A C A C-T4-F5

24.  T T T C C A A A A A   -T T T C T T A A C C  -A T C T T T T C A A-F4-F5

1. A A A A A A A A C C -T T T C T T A A C C-C A T A A A A C A C-T4-T5
2. A A A A A A A A C C -T T T C T T A A C C-C A T A A A A C A C-T4-F5
3. A A A A A A A A C C -T T T C T T A A C C-C A T A A A A C A C-F4-T5
4. A A A A A A A A C C -T T T C T T A A C C-C A T A A A A C A C-F4-F5
5. A A A A A A A A C C --T T T C T T A A C C  -A T C T T T T C A A-T4-T5
6. A A A A A A A A C C --T T T C T T A A C C  -A T C T T T T C A A-T4-F5
7. A A A A A A A A C C -T T T C T T A A C C  -A T C T T T T C A A-F4-T5
8. A A A A A A A A C C -T T T C T T A A C C  -A T C T T T T C A A-F4-F5

 
Figure 8.  Biomolecular Edge Filter 

The filter above give all sets of vertices that do not contain edge {1,2}. 
If  this process is iterated (as in Figure 8), all independent sets (or 
cliques) will be identified. 

 



  
 22 

{1,2}

{1,3}

{1,4}

{1,5}

{2,3}

{2,4}

{3,4}

{2,5}

{3,5}

{4,5}

Black ON, Red OFF =Independent Sets in G

Black OFF, Red ON =Cliques in G

DNA Library

 
Figure 9.  Filters for Edges of Graph in Figure 7. 

Outflow from previous (red or black, but not both) filter is passed on to 
the next filter of the same color. The final outflow is the set of 
molecules that represent independent sets (black) or cliques (red). This 
system is for the graph(s) in Figure 7.  A universal system is described 
in Figure 10. 
 

{1,2}

{1,3}

{n-2,n}

{n-1,n}

Edges in G ON, Edges in G’ OFF =Independent Sets in G

Edges in G OFF, Edges in G’ ON =Cliques in G

DNA Library

Every Graph G on n vertices has
G union G’= all possible pairs on
n vertices.  This enable the construction
of a universal device. 

.

Universal DNA Computer for any
Graph on n Vertices

Each possible edge is an filter. Then depending
on the problem, the flow is directed by the edges
present (or absent) in the given graph

 
Figure 10.   Universal DNA Independent Set Computer 



  
 23 

 

5.3  t-Stem DNA Code Generation Software 

 

 We describe a program which we make freely available.  The program(s) 

generates DNA codes.  Some of the inputs are: 

1. Length of DNA codewords:  n  ; 2. Stem sizes checked:  t 1 , t 2 , . . .  ;  3. Corresponding 

thresholds for each stem size:  s1 , s2 , . . .  ;  4. Maximum CH free energy parameter:  

G CH  ; 5. Nearest neighbor WC free energy lower bound parameter:  6. Nearest 

neighbor WC free energy upper bound parameter:  G wc .   

What is generated is a DNA code  C   such that: 

1. x  C     |x |  n   and  x  C.    Thus the WC complement of each strand in the 

code is also in the code. 

2. x  y  C   t ix , y  si.    Thus the maximum number of  t i  stems   in each CH 

duplex from  C   is at most  si.   

3. x  y  C  
2 x , y  G CH .   Thus each CH duplex in C has a free energy of 

formation above  G CH   

4. x  C     G wc  x 2 

 G wc .    Thus each WC duplex in C has a free energy 

of formation between  G wc   and  G wc .   

 

Example 7.  Below is a DNA code generated by one of our programs with the inputs: 

n=16; t 1  ,t 2  ,t 3  =1,2,3; s 1  ,s 2  ,s 3  =10,6,2;  G CH  =8 ;  G wc  18; G wc  22.    

No codeword contains GGG or CCC as a substring. The complement of any strand is 

either to the immediate right or left of the given strand.  There are 30 codewords in the 

code below. 



  
 24 

 
GGCCAAAAAAAAAAAA, TTTTTTTTTTTTGGCC, GGCAAAGGTTTTCCAA,  
TTGGAAAACCTTTGCC, CATTTTAAGGAACCGG, CCGGTTCCTTAAAATG,  
TCCTCTTTCTTTACCA, TGGTAAAGAAAGAGGA, TAGAATCCGTCAATTT,  
AAATTGACGGATTCTA, GGTTACGGTGGTGTTT, AAACACCACCGTAACC,  
TTTGTCACTTGTGGAG, CTCCACAAGTGACAAA, AGTATTTCGATCTTCC,  
GGAAGATCGAAATACT, CAGGCGTTGATGAACA, TGTTCATCAACGCCTG,  
TAACTATGTAGCATGG, CCATGCTACATAGTTA, CAACAATAGGAGGCTT,  
AAGCCTCCTATTGTTG, GGACTTAGGCAGACGT, ACGTCTGCCTAAGTCC,  
GAGCGAGGTAGATTAG, CTAATCTACCTCGCTC, GATACACACGGCATAT,  
ATATGCCGTGTGTATC, CGAGTGGCTCTCTCAT, ATGAGAGAGCCACTCG, 

 

 To further minimize errors in the applications, further constrains on the code were 

considered. Below is a DNA code generated by one of our programs with the inputs: 

n=12; t 1  =2; s 1  =6;  G CH  =7 ;    G wc  14; G wc  17.    No codeword contains 

GGG or CCC as a substring. In addition, in any given WC pairs of DNA codewords, only 

one strand contains a G.  This is achieved by selecting “ACT-AGT only” This strand will 

be used as the probe strand. Thus the WC complement of strand X is listed as Probe(X) 

below.  Moreover, with the addition of the coupling constraint we also ensure that 

sequences that are formed in the middle of the junctions of any library strand T i  T i1 ,  T 

i  F i1 ,  F i  T i1 ,  F i  F i1   all obey the code constraints.  This is to ensure that probes 

do not hybridize at locations where code strands are ligated into library strands.  See 

Figure 10. 



  
 25 

C C A A C C A A A A A A = T1
T T T T T T G G T T G G=Probe(T1)

A A A A A A A C C A C C=F1
G G T G G T T T T T T T=Probe(F1)

T T T T T C C T T C C A =T2
T G G A A G G A A A A A=Probe(T2)

T T A C C T C A A A C C =F2
G G T T T G A G G T A A =Probe(F2)

T T T C A C A A C T C C=T3
G G A G T T G T G A A A=Probe(T3)

T T C A A T C C A C A A =F3
T T G T G G A T T G A A=Probe(F3)

T C A C T C T C T C A A =T4
T T G A G A G A G T G A=Probe(T4)

T C T T T C T C C T C T=F4
A G A G G A G A A A G A=Probe(F4)

C A T C T C A C C A T C =T5
G A T G G T G A G A T G=Probe(T5)

A A C A C T A C A C A C =F5
G T G T G T A G T G T T=Probe(F5)

A A A A A A -T T T T T C=T1T2
A C C A C C- T T T T T C= F1T2
A A A A A A- T T A C C T =T1F2
A C C A C C -T T A C C T=F1F2
C T T C C A- T T T C A C=T2T3

C A A A C C -T T T C A C = F2T3
C T T C C A- T T C A A T =T2F3
C A A A C C- T T C A A T,=F2F3
A A C T C C- T C A C T C=T3T4
C C A C A A- T C A C T C =F3T4
A A C T C C -T C T T T C =T3F4
C C A C A A -T C T T T C=F3F4
T C T C A A- C A T C T C=T4T5
T C C T C T- C A T C T C =F4T5
T C T C A A- A A C A C T =T4F5
T C C T C T -A A C A C T=F4F5

No cross CH

C A A C C A A A A A A- T T A C C T C A A A C C- T T C A A T C C A C A A- T C A C T C T C T C A A - C A T C T C A C C A T C

T1-F2-F3-T4-T5

C A A C C A  (A A A A A- T T A C C T) ( C A A A C C- T T C A A T) ( C C A C A A- T C A C T C) (T C T C A A - C A T C T C) A C C A T C 

T1-(T1F2)(F2F3)(F3T4)(T4T5)T5

G G T T T G A G G T A A

G G T T T G A G G T A A

No bonding
No misreads

Cooperative DNA Codes with Coupling
Prevents probes from bonding across ligated junctions

Yes bonding
Good read  

Figure 11.  Cooperative DNA Code  

 

6. References 

 
1. M. Andronescu, A. Condon and H. Hoos, RNAsoft, submitted to NAR for the web-

based software special issue, available at http://www.rnasoft.ca/ 

 

2. M. Andronescu, Algorithms for predicting the secondary structure of pairs and 

combinatorial sets of nucleic acid strands, Masters Thesis, University of British 

Columbia, (2003.) 

 

3. E. Baum. DNA sequences useful for computation, DIMACS Series in Discrete 

Mathematics and Theoretical Computer Science, 44, 235-242, (1999.) 

 

4. Braich, R., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L. Solution of 

a 20-Variable 3-SAT Problem on a DNA Computer. Sciencexpress, 1-15, (2002). 

 



  
 26 

5. A. Brenneman and A. Condon, Strand Design for biomolecular computation, 

Theoretical Computer Science, 287, 39-58, (2002). 

 

6. H. Cai, et al., Flow Cytometry-Based Minisequencing: A New Platform for High 

Throughput Single Nucleotide Polymorphism Scoring, Genomics, 66, 135-143, (2000.) 

 

7. A. D’yachkov and D. Torney, On Similarity Codes, IEEE Trans. on Information 

Theory 46, 1558-1564, (2000.) 

 

8. R. Deaton, et al., A PCR Based Protocol for in Vitro Selection of Noncrosshybridizing 

Oligonucleotides, DNA Computing, DNA 8, M. Hagiya, A. Ohuchi (eds.), LNCS 2568, 

Springer, Berlin 196-204 (2002.) 

 

9. R. Deaton, et al., A Software Tool for Generating Noncrosshybridizing Libraries of 

DNA Oligonucleotides, DNA Computing, DNA 8, M. Hagiya, A. Ohuchi (eds.), LNCS 

2568, Springer, Berlin 252-261  (2002.) 

 

10. A. D’yachkov, et al., On a Class of Codes for Insertion-Deletion Metric, 2002 IEEE 

Intl. Symp. Info. Th., Lausanne, Switzerland, (2002.) 

 

11. A. D’yachkov, et al., Exordium for DNA Codes, Journal of Combinatorial 

Optimization, 7, no.4, 369-380 (2003.) 

 

12. A. D’yachkov, et al., Reverse-Complement Similarity Codes, IEEE Trans.on 

Information Theory to appear 

 

13. P. Erdos, D. Torney, and P. Sziklai, A Finite Word Poset, Elec. J. of Combinatorics, 

8, (2001.) 

 

14. M. Garzon, et al., A new metric for DNA computing, in Genetic Programming 1997: 

Proceedings of the Second Annual Conference, pp. 479-490, AAAI, 1997. Stanford 



  
 27 

University, July 13-16, 1997. 

 

15. D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge, (1997.) 

 

16. Hartemink, A., Gifford, D., A thermodynamic simulation of deoxyoligonucleotide 

hybridization for DNA computation, DIMACS Series in Discrete Mathematics and 

Theoretical Computer Science, 48, 25-37 (1999.) 

 

17. H. Hollman, A relation between Levenshtein-type distances and insertion and 

deletion correcting capabilities of codes, IEEE Trans. on Information Theory, 39 1424-

1427, (1993.) 

 

18. V. Levenshtein, Efficient reconstruction of sequences from their subsequences or 

supersequences, Journal of Combinatorial Theory, Series A, 93, 310-332 (2001.) 

 

19. V. Levenshtein, Binary Codes Capable of Correcting Deletions, Insertions, and 

Reversals, Soviet Phys.—Doklady, 10 707-710, (1966). 

 

20. V. Levenshtein, Bounds for Deletion-Insertion Correcting Codes, 2002 IEEE Intl. 

Symp. Info. Th., Lausanne, Switzerland, (2002). 

 

21. A. Macula, DNA-TAT Codes, USAF Technical Report, TR-2003-57, AFRL-IF-RS 

http://stinet.dtic.mil/cgi-bin/fulcrum_main.pl (2003.) 

 

22. A. Macula, et al., DNA Code Gen., available at https ://community.biospice.org 

 

23. J. SantaLucia Jr., A unified view of polymer, dumbbell, and oligonucleotide DNA 

nearest-neighbor thermodynamics, Proc. Natl. Acad. Sci. USA, Vol. 95, pp 1460-1465 

(1998.) 

 

24. M. Waterman, Introduction to Computational Biology, Chapman-Hall, London, 



  
 28 

(1995.) 

 

25. A. Zuker, B. Mathews and C. Turner, Algorithms and Thermodynamics for RNA 

Secondary Structure Prediction: a Practical Guide 




